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Background

Molecular modeling
Ø 3D graph neural networks (GNNs)

• 𝐺 = 𝒱, ℰ, 𝐻 ! , 𝑍 ! , 𝑋
• 𝒱: atoms, ℰ: edges, 𝐻 ! : atom features, 𝑍 ! : bond features, 𝑋: coordinates.
• Equivariant GNNs: coordinates, orientations, relative position…
• Invariant GNNs: bond lengths, angles, dihedrals…

Ø Conformation
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Background

Challenges for conformation representation

Ø High computational complexity for complete representation.
• 𝝍𝟏: same−side dihedral, 𝝍𝟐: opposite−side dihedral.
• A molecule with N atoms and D degrees on average: bond lengths Ο 𝑁𝐷 , 

angles Ο 𝑁𝐷$ , , dihedrals Ο 𝑁𝐷$ for 𝝍𝟏 and Ο 𝑵𝑫𝟑 for 𝝍𝟐 !!!
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Contributions

Ø We propose a plug-and-play quaternion message-passing (QMP) module to improve 
invariant GNNs in molecular conformation representation and analysis tasks
• QMP achieves a quaternion-based mechanism to encode 𝝍𝟏 and 𝝍𝟐.
• QMP is a plug-and-play design with small computational cost and one-line code.
• Computational complexity of QMP is 𝜪 𝑵𝑫𝒍𝒐𝒈𝑫 .



5

Our Approach: Overview

Ø Quaternion Message Passing Module (QMP)
• Encode the 3D rotations as a sequence of quaternions.
• Aggregate the rotations by the chained Hamilton product of the quaternions.
• Plug the real part into existing invariant GNNs.
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Our Approach

Ø Quaternions:
• 𝑞 = 𝑠 + 𝒊𝑥 + 𝒋𝑦 + 𝒌𝑧 ∈ ℍ, 𝑠 is the real part, and 𝒊, 𝒋, 𝒌 are the imaginary parts. 
• Represent rotations in 3D space. A rotation around the axis 𝒖  with an angle 𝜃.

𝑞 = [𝑠, 𝒗&]& = [cos
𝜃
2 , sin

𝜃
2 𝒖&]& , | 𝒖 |$ = 1

Ø Rotations:
• Given (𝑗, 𝑖), (𝑗, 𝑘) ∈ ℰ

Encode rotations with quaternions

𝑢'() =
𝑝('×𝑝()
||𝑝('×𝑝()||

, 𝜃'() = 𝑎𝑟𝑐𝑐𝑜𝑠
𝑝(' , 𝑝()

||𝑝('||$||𝑝()||$
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Our Approach

Ø Hamilton Product:
• For 𝑞* = [𝑠*, 𝒗*&]& and 𝑞$ = [𝑠$, 𝒗$&]&, the multiplication is:

𝑞*⊗𝑞$ = [𝑠*𝑠$ − 𝒗*, 𝒗$ , 𝒗*×𝒗$ + 𝑠*𝒗$ + 𝑠$𝒗*]

• Hamilton product is not commutative.
Ø Sorting and Merging

• For quaternion set of 𝑗, 𝑖 , 𝑖, 𝑗 ∈ ℰ, select each top-𝐾 rotation angles and sort.

• A quaternion sequence is 𝒬(),() = 𝑞'
(),() ∈ ℍ$..

Angle-based Quaternion Sorting and Merging

𝑞(),() = 𝑞*
(),()⊗𝑞$

),( ⊗⋯⊗𝑞$.
),( = ⨂/∈𝒬(",$)𝑞
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Our Approach
Plugging QMP into Invariant GNNs

Ø Given a graph 𝐺(𝒱, ℰ, 𝐻 ! , 𝑍 ! , 𝑋), in the 𝒍-
th message passing layer:

𝑧!"
($%&) = 𝑓( 𝑒!" ,	

ℎ!
($%&) = 𝑓)(ℎ!

$ ,)
"∈𝒩!

𝑧!"
($%&))

Ø For DimeNet, DimeNet++, SphereNet

𝑒!" = 𝑧!"
($)⊕)

,∈𝒩!\#
𝑓-(𝑧!,

$ , 𝑏., Θ, Φ/||𝑅𝑒(𝑞(!,")))

Ø For SchNet:
𝑒!" = 𝑓/(ℎ"

$ )⨀𝑓12(𝑏.)||𝑅𝑒(𝑞(!,"))
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Theoretical Properties

Ø For 𝑞* = [𝑠*, 𝒗*&]&and 𝑞$ = [𝑠$, 𝒗$&]&, applying a rotation 𝑅 on the rotation axes:
[𝑠*, 𝑅(𝒗*)&]& ⊗ [𝑠$, 𝑅 𝒗$)& &

= [𝑠*𝑠$ − 𝒗*, 𝒗$ , 𝑅(𝒗*×𝒗$ + 𝑠*𝒗$ + 𝑠$𝒗*)]

• Real part is global SE(3)-Invariant, imaginary part is SE(3)-Equivariant.

Global SE(3)-Invariance

Sensitivity to local twisting 
Ø If only applies a rotation 𝑅 on 𝒒*. The real part of output is: 

𝑠*𝑠$ − 𝒗*, 𝒗$ ≠ 𝑠*𝑠$ − 𝑅(𝒗*), 𝒗$
• Real part is sensitive to local twisting.
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Theoretical Properties

Ø For real part: 𝑅𝑒(𝑞*⊗𝑞$) = 𝑠*𝑠$ − 𝒗*, 𝒗$
• 𝒗*, 𝒗$  will compute 𝒖*, 𝒖$  which records the dihedral angle defined by the two 

axes.
• If 𝑞* and 𝑞$ from the same set: 𝝍𝟏. If 𝑞* and 𝑞$ from the opposite set:𝝍𝟐.

Mixed Encoding of Rotations and Dihedrals (𝝍𝟏, 𝝍𝟐)

Computational Efficiency
Ø QMP encodes dihedrals implicitly by 

merging a sequence of quaternions 
which only consider 1-hop neighbors 
𝜪(𝑵𝑫𝟐) .

Ø Multi-thread reduction strategy to 
reduce to 𝜪(𝑵𝑫𝒍𝒐𝒈𝑫) .
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Experiments
Ø MD17 and MD17@CCSD.
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Experiments
Ø OC20.
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Experiments
Ø Ablation study. Ø Potential on equivariant GNNs.
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Conclusion

Ø An efficient and effective quaternion message-passing module (QMP) for molecular 
conformation representation and analysis.

Ø QMP achieves global SE(3)-invariance and enhances the sensitivity to local bond 
twisting simultaneously.

Ø With a small computational cost, we can plug this module into most existing 
invariant GNNs by one-line code.

Ø In the future, we would like to utilize the imaginary part to enhance equivariant 
GNNs. Additionally, we plan to design more hypercomplex neural networks based on 
Clifford Algebra

Code: https://github.com/AngxiaoYue/QMP

https://github.com/AngxiaoYue/QMP


Thank You for listening!


