

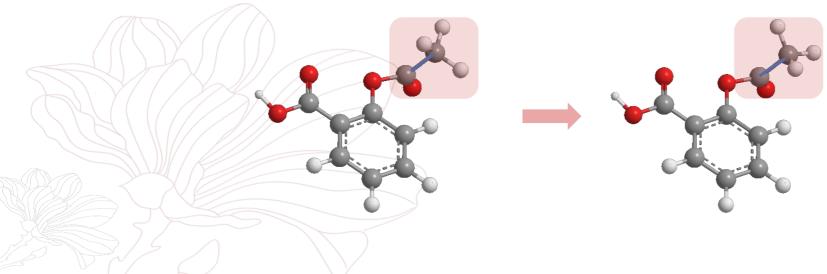
A Plug-and-Play Quaternion Message-Passing Module for Molecular Conformation Representation

Angxiao Yue¹ Dixin Luo² Hongteng Xu^{1,3}

¹Gaoling School of Artifical Intelligence, Renmin University of China ²School of Computer Science and Technology, Beijing Institute of Technology ³Beijing Key Laboratory of Big Data Management and Analysis Methods

Background

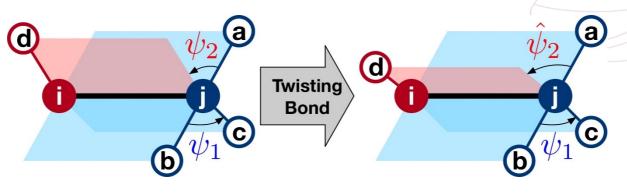
- 3D graph neural networks (GNNs)
 - $G = \left(\mathcal{V}, \mathcal{E}, H^{(0)}, Z^{(0)}, X\right)$
 - \mathcal{V} : atoms, \mathcal{E} : edges, $H^{(0)}$: atom features, $Z^{(0)}$: bond features, X: coordinates.
 - Equivariant GNNs: coordinates, orientations, relative position...
 - Invariant GNNs: bond lengths, angles, dihedrals...
- Conformation



Background

•

Challenges for conformation representation

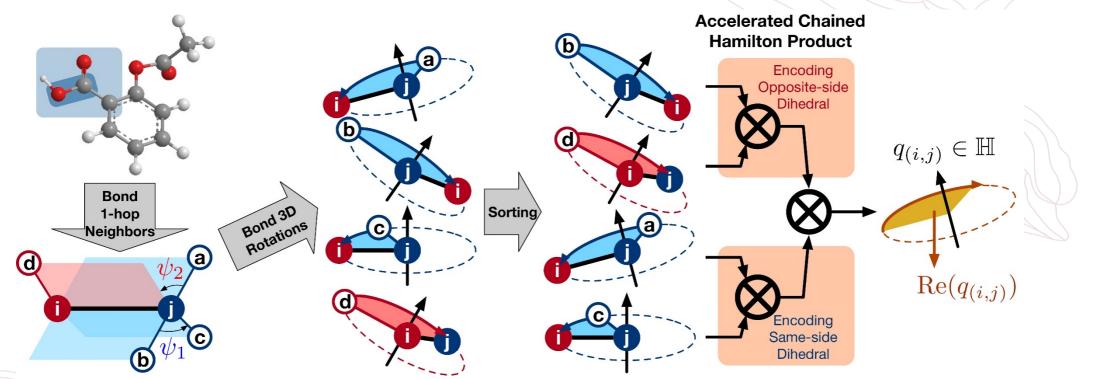


- High computational complexity for complete representation.
 - ψ_1 : same-side dihedral, ψ_2 : opposite-side dihedral.
 - A molecule with N atoms and D degrees on average: bond lengths O(ND), angles $O(ND^2)$, , dihedrals $O(ND^2)$ for ψ_1 and $O(ND^3)$ for ψ_2 !!!

Contributions

- We propose a plug-and-play quaternion message-passing (QMP) module to improve invariant GNNs in molecular conformation representation and analysis tasks
 - QMP achieves a quaternion-based mechanism to encode ψ_1 and ψ_2 .
 - **QMP** is a **plug-and-play** design with small computational cost and one-line code.
 - Computational complexity of **QMP** is **O**(**NDlogD**).

Our Approach: Overview



Quaternion Message Passing Module (QMP)

- Encode the 3D rotations as a sequence of quaternions.
- Aggregate the rotations by the chained Hamilton product of the quaternions.
- Plug the real part into existing invariant GNNs.

Our Approach

Encode rotations with quaternions

> Quaternions:

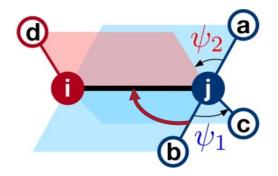
- $q = s + ix + jy + kz \in \mathbb{H}$, s is the real part, and i, j, k are the imaginary parts.
- Represent rotations in 3D space. A rotation around the axis $oldsymbol{u}$ with an angle $oldsymbol{ heta}.$

$$q = [s, \boldsymbol{v}^T]^T = [\cos\left(\frac{\theta}{2}\right), \sin\left(\frac{\theta}{2}\right)\boldsymbol{u}^T]^T, ||\boldsymbol{u}||_2 = 1$$

> Rotations:

Given
$$(j, i), (j, k) \in \mathcal{E}$$

$$u_{kji} = \frac{p_{jk} \times p_{ji}}{||p_{jk} \times p_{ji}||}, \theta_{kji} = \arccos\left(\frac{\langle p_{jk}, p_{ji} \rangle}{||p_{jk}||_2||p_{ji}||_2}\right)$$

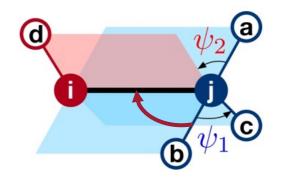


Our Approach

Angle-based Quaternion Sorting and Merging

- > Hamilton Product:
 - For $q_1 = [s_1, \boldsymbol{v}_1^T]^T$ and $q_2 = [s_2, \boldsymbol{v}_2^T]^T$, the multiplication is: $q_1 \otimes q_2 = [s_1s_2 - \langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle, \boldsymbol{v}_1 \times \boldsymbol{v}_2 + s_1\boldsymbol{v}_2 + s_2\boldsymbol{v}_1]$
 - Hamilton product is not commutative.
- Sorting and Merging
 - For quaternion set of (j, i), $(i, j) \in \mathcal{E}$, select each top-K rotation angles and sort.
 - A quaternion sequence is $Q_{(i,j)} = \{q_k^{(i,j)}\} \in \mathbb{H}^{2K}$.

$$q_{(i,j)} = q_1^{(i,j)} \otimes q_2^{(i,j)} \otimes \dots \otimes q_{2K}^{(i,j)} = \bigotimes_{q \in \mathcal{Q}_{(i,j)}} q_{2K}^{(i,j)}$$



Our Approach

Plugging QMP into Invariant GNNs

Siven a graph $G(\mathcal{V}, \mathcal{E}, H^{(0)}, Z^{(0)}, X)$, in the *l*-th message passing layer:

$$z_{ij}^{(l+1)} = f_e(e_{ij}),$$

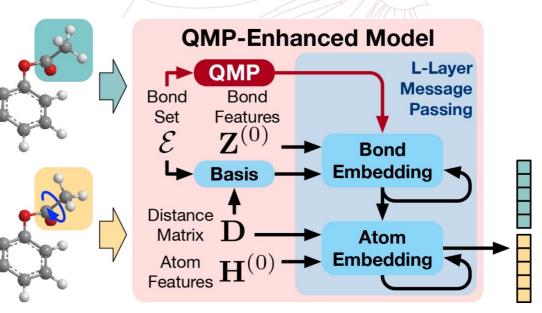
$$h_i^{(l+1)} = f_v(h_i^{(l)}, \sum_{j \in \mathcal{N}_i} z_{ij}^{(l+1)})$$

For DimeNet, DimeNet++, SphereNet

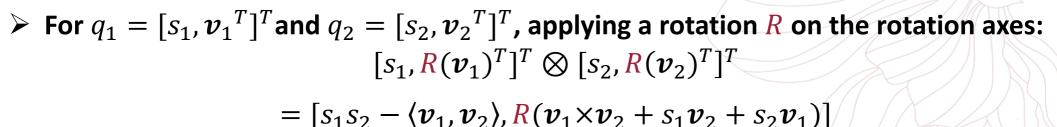
$$e_{ij} = z_{ij}^{(l)} \bigoplus \sum_{k \in \mathcal{N}_{i \setminus j}} f_a(z_{ik}^{(l)}, b_D, \Theta, \Phi_s || Re(q_{(i,j)}))$$

For SchNet:

 $e_{ij} = f_s(h_j^{(l)}) \odot f_{cf}(b_D) || Re(q_{(i,j)})$



Theoretical Properties



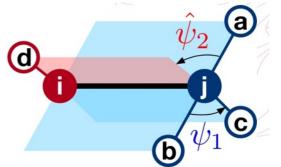
• Real part is global SE(3)-Invariant, imaginary part is SE(3)-Equivariant.

Sensitivity to local twisting

> If only applies a rotation R on q_1 . The real part of output is:

$$s_1 s_2 - \langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle \neq s_1 s_2 - \langle \boldsymbol{R}(\boldsymbol{v}_1), \boldsymbol{v}_2 \rangle$$

• Real part is sensitive to local twisting.



Theoretical Properties

M

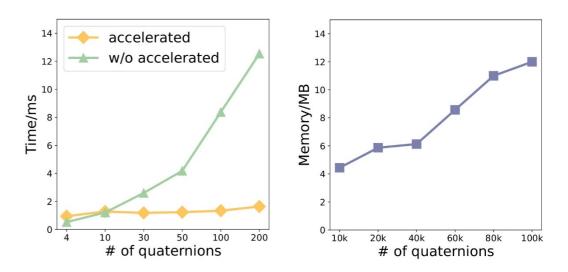
Mixed Encoding of Rotations and Dihedrals (ψ_1, ψ_2)

> For real part: $Re(q_1 \otimes q_2) = s_1 s_2 - \langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle$

- $\langle v_1, v_2 \rangle$ will compute $\langle u_1, u_2 \rangle$ which records the dihedral angle defined by the two axes.
- If q_1 and q_2 from the same set: ψ_1 . If q_1 and q_2 from the opposite set: ψ_2 .

Computational Efficiency

- QMP encodes dihedrals implicitly by merging a sequence of quaternions which only consider 1-hop neighbors O(ND²).
- Multi-thread reduction strategy to reduce to O(NDlogD).



Experiments

Table 1: Results in terms of force MAE $(\frac{\text{kcal}}{\text{mol}\mathring{A}})$. The best results are in bold. The second best results are with underlines. \uparrow indicates the performance is improved. The results of sGDML and DimeNet are quoted from (Liu et al. 2022).

Dataset	Molecule	sGDML	DimeNet	SchNet	DimeNet++	SphereNet	Q-SchNet	Q-DimeNet++	Q-SphereNet
	Aspirin	0.68	0.499	1.339	0.325	0.400	1.289↑	0.316 ↑	0.356↑
	Benzene	0.20	0.187	0.346	0.168	0.193	0.316↑	0.151 ↑	0.177↑
	Ethanol	0.33	0.230	0.738	0.150	0.181	0.468↑	0.148 ↑	0.169↑
MD17	Malonaldehyde	0.41	0.383	1.559	0.263	0.379	1.540↑	0.241 [↑]	0.321↑
	Naphthalene	0.11	0.215	0.723	0.100	0.159	0.521↑	0.106	0.138↑
	Salicylic acid	0.28	0.374	1.001	0.231	0.261	0.971↑	0.238	0.321
	Toluene	0.14	0.216	0.747	0.117	0.142	0.550↑	0.107 ↑	0.136↑
	Uracil	0.24	0.301	1.351	0.189	0.228	1.010↑	0.178 ↑	0.241
	Aspirin	-	-	1.471	0.387	0.458	1.298↑	0.365 ↑	0.475
	Benzene	-	-	0.352	0.049	0.061	0.287↑	0.048 ↑	0.063
MD17@CCSD	Ethanol	-	-	1.321	0.129	0.158	0.786↑	0.108 ↑	0.148↑
	Malonaldehyde	-	-	1.531	0.211	0.289	1.086↑	0.231	0.264↑
	Toluene	-	-	0.855	0.133	0.160	0.637↑	<u>0.128</u> ↑	0.052↑

Experiments

➢ OC20.

Table 2: Results on OC20 IS2RE task in terms of energy MAE (eV) and the percentage of EwT of the ground truth energy. Performance is reported for models trained on the 10k training dataset.

Metrics		CGCNN	SchNet	DimeNet	DimeNet++	Q-SchNet	Q-DimeNet	Q-DimeNet++
	ID	0.9773	1.0480	0.9314	0.9261	1.0363↑	0.9132 ↑	<u>0.9177</u> ↑
Energy	OOD Ads	0.9818	1.0450	1.0720	<u>0.9400</u>	1.0640	0.9865↑	0.9295 ↑
MAE	OOD Cat	0.9269	1.0630	0.8945	0.8828	1.0370 ↑	0.8753 ↑	0.8816↑
	OOD Both	0.8828	1.0076	0.9643	0.8572	0.9646 ↑	0.9317↑	0.8513 ↑
	Average	0.9422	1.0409	0.9656	0.9015	1.0255 ↑	0.9267↑	0.8950 ↑
	ID	1.84	1.58	1.80	1.79	1.59↑	<u>1.84</u> ↑	1.91 ↑
EwT	OOD Ads	1.72	1.53	1.62	1.67	1.52	1.85 ↑	<u>1.79</u> ↑
(%)	OOD Cat	1.93	1.56	1.93	1.81	1.46	1.96↑	2.13 ↑
	OOD Both	1.69	1.48	1.57	1.80	1.61↑	$\overline{1.70}$	<u>1.75</u> ↑
	Average	1.80	1.54	1.73	1.77	1.55↑	<u>1.84</u> ↑	1.90 ↑

Experiments

> Ablation study.

QMP Components

i-side

Х

j-side

√ X

✓

Table 3: Effects of ablating components of QMP.

sorting

 \checkmark

√ X

 \checkmark

Force MAE

Benzene

0.152

0.166

0.173

0.151

Aspirin

0.323

0.360

0.390

0.316

Table 4: Mean Squared Error $(\times 10^{-2})$ for the future position
estimation in the N-body system experiment.

Method	SE(3) Trans.	TFN	EGNN	Q-EGNN
MSE	2.440	1.550	0.724	0.668

Potential on equivariant GNNs.

Conclusion

- An efficient and effective quaternion message-passing module (QMP) for molecular conformation representation and analysis.
- QMP achieves global SE(3)-invariance and enhances the sensitivity to local bond twisting simultaneously.
- With a small computational cost, we can plug this module into most existing invariant GNNs by one-line code.
- In the future, we would like to utilize the imaginary part to enhance equivariant GNNs. Additionally, we plan to design more hypercomplex neural networks based on Clifford Algebra

Code: https://github.com/AngxiaoYue/QMP

Thank You for listening!