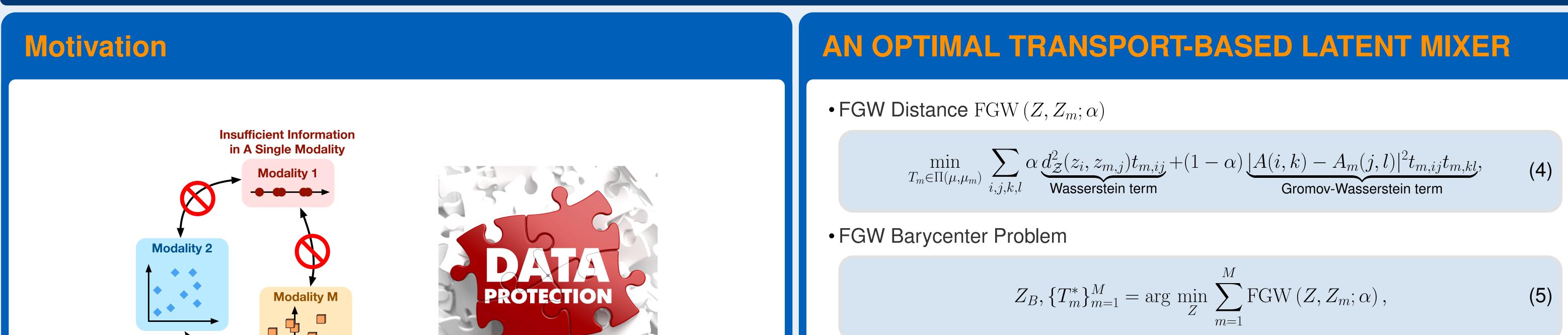
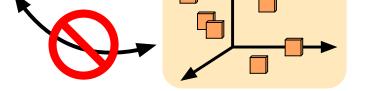
The 39th Annual AAAI Conference on Artificial Intelligence

AN OPTIMAL TRANSPORT-BASED LATENT MIXER FOR ROBUST MULTI-MODAL LEARNING

Fengjiao Gong, Angxiao Yue, Hongteng Xu

Renmin University of China, Beijing, China





Practical scenario with unaligned and distributed multi-modal data.

- Real-world multi-modal data are often scattered to different local agents, and each agent can only access the data in a single modality.
- Due to privacy protection and data security, sharing data directly across different agents is forbidden in many applications.
- What is worse, for some agents, the data associated with its modality may be insufficient for downstream tasks because the number of the data can be limited and the features can be not informative enough for representation learning.

Proposed Method

Suppose that we have a set of multi-modal data, denoted as $\mathcal{D} = \{X_m\}_{m=1}^M$, where M is the number of modalities. The data of the m-th modality, i.e., $X_m = \{x_{m,j}\}_{j=1}^{N_m} \in \mathbb{R}^{N_m \times D_m}$, contains $N_m D_m$ -dimensional samples.

Stochastic Mixing

$$\tilde{Z}_B = N_B \sum_{i=1}^M M_m \odot (T_m^* Z_m), \text{ with } \sum_{m=1}^M M_m = 1_{N_B \times d},$$
 (6)

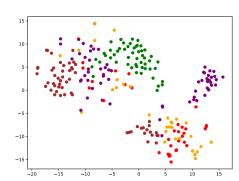
Augmented Latent Code

$$\tilde{Z}_m = (T_m^*)^\top \tilde{Z}_B,$$

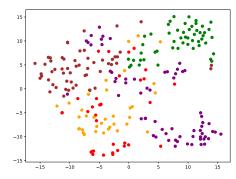
Numerical Comparisons

Clustering Performance

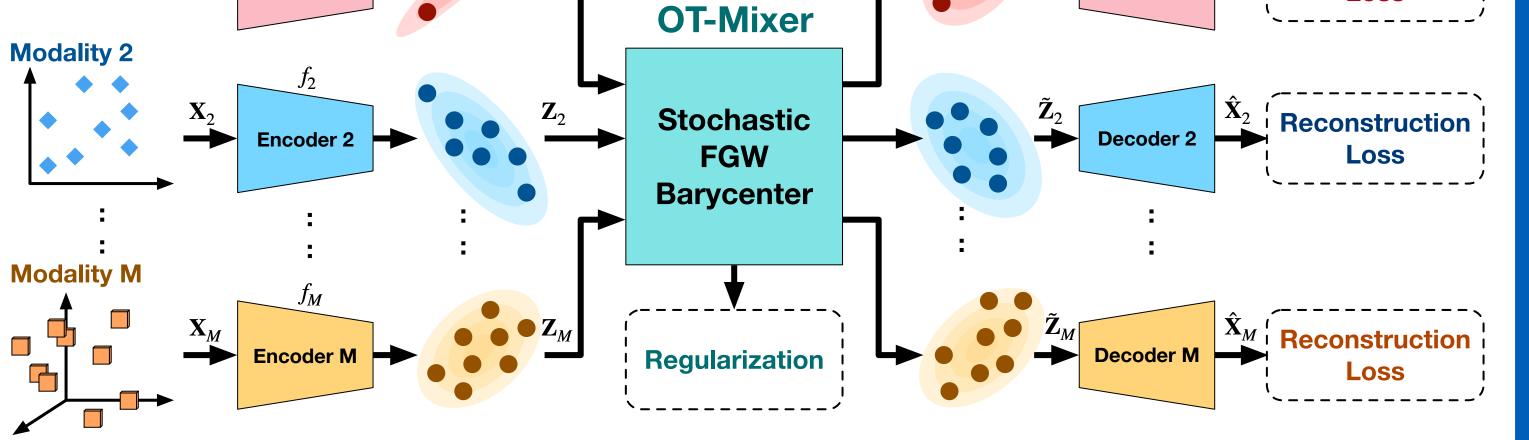
Data type	Datasets Algorithms	Caltech 7 Purity	ORL Purity	Movies Purity	Prokaryotic Purity
Aligned	MCCA	0.5313	0.3475	0.0989	0.5620
	DCCAE	0.4110	0.5625	0.1572	0.5070
	AttnAE	0.4600	0.4600	0.1880	0.5390
	MVKSC	0.5196	0.3013	0.2285	0.6188
	MultiNMF	0.4525	0.6900	0.1726	0.5771
	MWAE+OTM	0.6072	0.6563	0.3177	0.5952
	MWAE+OTM(WB)	0.6097	0.6525	0.3184	0.5541
Unaligned	MVC-UM	0.3112	0.5431	0.1841	0.4451
	GWMAC	0.3568	0.5118	0.1928	0.5479
	MWAE+OTM	0.5788	0.6550	0.2925	0.5438
	MWAE+OTM(WB)	0.5667	0.6350	0.2860	0.5299



(7)



Fused



The scheme of OTM-based multi-modal learning.

Learning the WAE models

$$\min_{\{f_m,g_m\}_{m=1}^M} \sum_{m=1}^M \|X_m - \hat{X}_m\|_F^2 + \lambda R(\{Z_m\}_{m=1}^M),$$
(1)

Reconstruction loss of each modality

$$\mathcal{L}_{mix} = \sum_{m=1}^{M} \left(\|X_m - g_m(Z_m)\|_F^2 + \|Z_m - \tilde{Z}_m\|_F^2 \right),$$
(2)

• Regularization on the latent representations

 $\min_{T\in\Pi(\mu_B,\mu_C)} \sum_{i,j,k,l} |K(i,k) - I_C(j,l)|^2 t_{ij} t_{kl}, \quad clustering$

Classification & Regression Performance

Dataset	Method	Result	Task
AV-MNIST	Late fusion Late fusion + OTM	0.7295 0.7316	Classification
ENRICO	MI matrix MI matrix + OTM Tensor matrix Tensor matrix + OTM	0.4815 0.5034 0.4814 0.4911	Classification
CMU-MOSI	Late fusion Late fusion + OTM LRTF LRTF + OTM MFM MFM + OTM	0.5194 0.5368 0.5245 0.5327 0.5391 0.5410	Classification
	Late fusion Late fusion + OTM Tenser fusion Tenser fusion + OTM	1.3710 1.3630 1.3691 1.3644	Regression
MUJOCO	Tensor fusion Tensor fusion + OTM	$\begin{array}{c} 1.583{\times}10^{-3} \\ \textbf{1.369}{\times}10^{-3} \end{array}$	Regression

Selected Modality Dataset (Task) Method Prokaryotic MWAE 0.4936 0.6261 0.4791 MWAE+OTM **0.5554** 0.5209 **0.5426** (Clustering) 0.5369 0.5373 0.5163 Late fusion CMU-MOSI Late fusion+OTM **0.5428** 0.5328 **0.5268** (Classification) LRTF **0.5190 0.5241** 0.5131 LRTF+OTM 0.5131 0.5222 0.5209 Late fusion **1.3721 1.3581** 1.4055 Late fusion+OTM CMU-MOSI 1.3804 1.3629 1.3698 1.3684 1.3680 1.3853 (Regression) Tenser fusion Tenser fusion+OTM | 1.3674 1.3669 1.3716

Single Modality

Conclusion & Future Work

- We propose a novel optimal transport-based mixer (OTM) that achieves data alignment and augmentation for robust multi-modal learning.
- In the future, we plan to test our method in real-world applications, e.g., federated learning for healthcare data modeling.

Email		

